Choline Pathway Nutrients and Metabolites and Cognitive Impairment After Acute Ischemic Stroke.

Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (C.Z., Z.L., B.C., S.Q., X.Z., A.W., T.X., Y.Z.). Department of Epidemiology, School of Public Health, Chongqing Medical University, China (X.B.). Department of Neurology, The 88th Hospital of PLA, Shandong, China (J.Z.). Department of Neurology, Kerqin District First People's Hospital of Tongliao City, China (Z.J.).

Stroke. 2021;(3):887-895

Abstract

BACKGROUND AND PURPOSE Choline metabolism was suggested to play pathophysiological roles in nervous system and atherosclerosis development. However, little is known about the impacts of choline pathway nutrients and metabolites on poststroke cognitive impairment. We aimed to prospectively investigate the relationships between circulating choline, betaine, and trimethylamine N-oxide with cognitive impairment among acute ischemic stroke patients. METHODS We derived data from CATIS (China Antihypertensive Trial in Acute Ischemic Stroke). Plasma choline, betaine, and trimethylamine N-oxide concentrations at baseline were measured in 617 participants. Cognitive impairment was evaluated using the Mini-Mental State Examination and the Montreal Cognitive Assessment. Reclassification and calibration of models with choline-related biomarkers were evaluated. RESULTS Plasma choline and betaine were inversely associated with cognitive impairment. Compared with the lowest tertile, adjusted odds ratios of Mini-Mental State Examination-defined cognitive impairment for participants in the highest tertiles of choline and betaine were 0.59 (95% CI, 0.39-0.90) and 0.60 (95% CI, 0.39-0.92), respectively. In addition, both choline and betaine offered incremental predictive ability over the basic model with established risk factors, shown by increase in net reclassification improvement and integrated discrimination improvement. There were similar significant relationships between choline and betaine with cognitive impairment as defined by the Montreal Cognitive Assessment. However, plasma trimethylamine N-oxide was only associated with cognitive impairment evaluated using the Mini-Mental State Examination; the adjusted odds ratio was 1.33 (95% CI, 1.04-1.72) for each 1-SD increment of trimethylamine N-oxide. CONCLUSIONS Patients with higher choline and betaine levels had lower risk of cognitive impairment after ischemic stroke, supporting promising prognostic roles of choline pathway nutrients for poststroke cognitive impairment.

Methodological quality

Metadata